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SUMMARY 
Two concentric spheres are supposed to rotate about the same 

axis with almost the same angular velocity, so that the viscous 
stresses over the surfaces of the spheres induce a flow which may 
be represented by a small perturbation superimposed upon a rigid 
body rotation of the fluid as a whole. The governing equations 
are therefore linearized in the magnitude of the perturbation, and 
it appears that the validity of this linearization is independent of the 
Reynolds number of the primary rotation. Attention is then 
restricted to the case in which the Reynolds number is large, the 
principal object of the note being to exemplify some of the pro- 
perties of rotating systems at large Reynolds numbers in terms of a 
particularly simple mathematical model. 

I t  is found that the cylindrical surface that touches the inner 
sphere (the axis being the axis of rotation) is a singular surface 
in which velocity gradients are very large. Everywhere outside 
this cylinder, the fluid rotates as a rigid body with the same angular 
velocity as the outer sphere. Inside the cylinder, the velocity 
distribution in the central (inviscid) core of the motion is shown to 
be determined by the velocity distribution in the boundary layers 
over the spheres, and explicit solutions are obtained for all these 
velocity distributions. The mechanics of the cylindrical shear 
layer itself is also discussed, though no explicit solution is obtained 
in this case. 

1. INTRODUCTION 
In the literature relating to rotating systems in fluid dynamics, very 

little attention has been paid to problems in which the configuration of the 
boundaries is such that the flow may be represented by a small perturbation 
superimposed upon a rigid body rotation of the (incompressible) fluid as a 
whole. Indeed, the only relevant work of which I am aware is that of 
Squire (1953) and Stewartson (1953). Squire considered the flow due to 
a rotating disc when the fluid at a great distance from the disc is rotating as 
a rigid body about the same axis with almost the same angular velocity, and 
Stewartson considered the similar problem in which two discs rotate about 
the same axis with almost the same angular velocity. In  both these 
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problenis, the potential value of the basic approximation was, perhaps, some- 
what obscured by the fact that the general form of the exact solutions of the 
Navier-Stokes equations had previously been found by Batchelor (1951). 
The peculiar property of the general class of flows under discussion is, in 
fact, that the governing equations become linear in a manner that is in- 
dependent of the Reynolds number, and the much greater tractability of 
linear equations leads to the expectation that substantial analytical progress 
can be made in such problems. A discussion of many of the interesting 
properties of rotating systems is undoubtedly prohibited by the lineari- 
zation, but this is obviously not true of all such properties. In particular, 
the phenomenon of flow at large Reynolds numbers being governed by 
linear equations is of real interest, and may be expected to yield useful in- 
formation concerning the behaviour of boundary layers in rotating systems. 

The present note is concerned with the particular problem in which 
two concentric spheres rotate rapidly about the same axis with slightly 
different angular velocities. In such a system, it is clear that the viscous 
stresses over the boundaries must induce a secondary flow, and the prin- 
cipal purpose of the note is to examine the properties of this secondary flow 
when the Reynolds number is large. 

2. THE GOVERNING EQUATIONS 

Let the radii of the inner and outer spheres be a and ora, respectively, 
and let the corresponding angular velocities be CJ and Q(1+ E), where E is 
very small. Let (r’, 8, 4)  denote spherical polar coordinates in which the 
line 0 = 0 coincides with the axis of rotation, and let u’, v‘, w‘, be the corres- 
ponding components of velocity (see figure 1). 

By symmetry, all dynamical variables must be independent of 4, so 
that the incompressibility condition may be integrated in terms of a stream 
function JI’, where 

Then, writing 

the Navier-Stokes equations of steady motion become (see Goldstein 1938, 
ch. 3) 

and 

where 
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The boundary conditions for equations (2.3) and (2.4) are : 
, 
I 

/- 
I 

Figure 1. Notation. 

When E = 0, the exact solution of the problem is obviously the rigid 
body rotation represented by 

(CI’ = 0, X I  = f2r‘2sin2fl. 

Hence, when E is non-zero but small, it is reasonable to write 

(CI’ = ea3Q#, x’ = sin28 + Ea2RX, (2.7) 
and retain only terms of the first order in E .  

dimensionless variable 

the dynamical equations (2-3) and (2.4) reduce to 

Thus, introducing the 

I = r’/a, (2.8j 

(2.10) 
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where 0 2  is the same operator as (2.5), but with r’ replaced by r ,  and R is the 
Reynold’s number given by 

a2Q R=-. 
V 

The boundary conditions become 

(2.11) 

The equations (2.9) and (2.10) form the basis of the present note. 
I t  is worth noting here that the approximation leading to (2.9) and (2.10) 

is somewhat analogous to the approximation introduced by Oseen (1910) in 
problems of uniform streaming past obstacles. For, in both cases, a linear 
approximation to the inertia terms in the Navier-Stokes equation is made. 
In Oseen’s case, however, it is an immediate (kinematic) consequence of 
the boundary conditions that the approximate form of the inertia terms is 
invalid in the neighbourhood of the obstacle, so that the approximation is 
spatially uniform only if the Reynolds number is very small. In  the present 
case no such troubles seem to arise, since the boundary conditions are 
kinematically consistent with the linearization over the whole field of flow, 
and the Reynolds number of the primary motion remains a significant para- 
meter on which there is no immediately obvious restriction. Nevertheless, 
when the Reynolds number is very large, the possibility that intense velocity 
gradients in the secondary flow might invalidate the linearization must not 
be ignored. This last point will be a matter for subsequent examination. 

Although the spherical polar coordinates are particularly suited to the 
geometry of the boundaries, many aspects of the natural dynamical be- 
haviour of the system at large Reynolds numbers are of a much more two- 
dimensional nature than the boundary conditions suggest. It will there- 
fore be useful to set out here the governing equations in terms of the cylin- 
drical coordinates (see figure 1) 

p = rsin8, 5 = rcos8. (2.13) 
Thus, (2.9) and (2.10) become 

and 

where 

(2.14) 

(2.15) 

(2.16) 

3. THE BOUNDARY LAYERS OVER THE SPHERES 

When the Reynolds number is very large, viscous forces must be 
negligible over the whole field of flow, except, possibly, in the neighbour- 
hood of certain singular surfaces. The cylindrical polar equations (2.14) 



Almost-rigid rotation of jiuid between concentric spheres 509 

and (2.15) then show that, apart from such surfaces, the solutions must 
take the simple form 

and since it is clearly impossible to satisfy the viscous boundary conditions 
(2.12) with such functions, it follows that the singular surfaces must indeed 
exist in this problem. 

Now, it is natural in the first place to suppose that the singular surfaces 
take the form of conventional boundary layers over the two spherical bound- 
aries. Thus, taking the case of the inner sphere first, the usual boundary 
layer approximations in the dynamical equations (2.9) and (2.10) lead to the 
equations 

In view of the large velocity gradients implied by the approximate equations 
(3.2), it is then proper to enquire whether these equations are consistent 
with the original linearization in E .  Returning, therefore, to the exact 
dynamical equations (2.3) and (2.4), the neglected inertia terms in the first 
of these equations are 

which, on the assumption that a boundary layer exists at r = 1, reduce to 

Thus, since we may assume 
+ = O(R--lI2), 

a/ar = 0 ( ~ 1 / 2 ) ,  

x = 0(1), 
a/ae = o(q, 

the order of magnitude of the neglected terms is 
€zUQ2R1/2 .  

The order of magnitude of the inertia term retained in the first of equations 
(3.2), on the other hand, is 

EUQ nax -cos8 or ~ a ! 2 ~ R l / ~ .  
ar 

Hence the neglected terms are smaller by a factor E than those retained, and 
the presence of large velocity gradients does not affect the basic approxi- 
mation. The argument may not, of course, apply near particular values of 
8, notably near the equator. Similar remarks apply to the other dynamical 
equation. 

The property of the equations (3.2) that is chiefly responsible for the 
success of this investigation is that they are both ordinary differential 
equations. This remarkable circumstance possibly embodies a point of 
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principle which might have been anticipated on general grounds. It is, of 
course, a consequence of the linearization that the entire secondary flow 
must be reversible. In  particular, this reversibility must be true of the 
flow in the boundary layers. Now, the boundary layer flow in an axial 
plane presumably involves a general mass flux from the poles to the equator, 
or vice versa, depending on whether E is negative or positive (for the inner 
sphere). Hence, if one regards this flow as being determined by conditions 
just outside, the boundary layer, together with an initial condition rep- 
resented by the fact that the flow is of some generalized ‘ stagnation ’ type 
at the poles (say), then the corresponding solution at the equator must be 
such that, when used as an initial condition for the reversed flow, it yields 
an identical flow pattern. This would appear to impose a severe integral 
condition on the flow in the boundary layers, and by far the most attractive 
method of satisfying this condition is to suppose that the velocity profile at 
each value of 0 is determined independently. That such is the case is 
shown by (3.2), and the explanation given seems at least a possible one. 

One integration of (3.2) gives 

(3.3) 

where t j 0  and xo are functions of 0 only, which are determined by conditions 
at the outer edge of the boundary layer. From (3.3) it follows that 

34 

so that a suitable measure of distance from the boundary is 

The four independent solutions of (3.4) are then of the form 

and the bounded solution for t+h that has a double zero at  q = 0 is 

The corresponding solution for 4 follows immediately from the first of 
equations (3.3), and is 

Then, since x must also vanish at q = 0, we must have 

q = ( r -  1)(Rcos8)1’2 (0 < 0 < 4.r). (3.5) 

exp{( k 1 & i)~}, 

+ = yh0{l -e-Q(cosq+sinq)}. (3.6) 

(3.7) 

xo = 2(~cose)112+,. (3.8) 

x = xo - 2( R cos 8)1’2+o e-Q cos 7 

The formulae (3.5) to ( 3 . Q  which represent the explicit solution for the 
flow in a three-dimensional boundary layer, were first obtained by Ekman 
(1902). Actually, Ekman considered the flow near a rotating disc when 
the relative flow at a great distance from the disc is a uniform stream, but, 
to the order of the boundary layer approximation, this flow is clearly identical 
with the flow near the spherical boundaries of the present problem. Since 
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the boundary layer is very thin, each element of the surface of the sphere 
may be regarded as a large disc rotating with the normal component 0 cos 6’ 
of the angular velocity of the sphere, and the relative velocity outside the 
boundary layer is locally a uniform stream. 

The most striking feature of the solution is the oscillatory approach to 
conditions in the ‘ inviscid ’ core of the motion (the ‘ Ekman spiral ’). The 
same feature appeared, of course, in Squire’s and Stewartson’s solutions 
for the flow near a rotating disc. Another point of interest is the explicit 
formula (3.5) for the thickening of the boundary layer towards the equator. 
Very close to the equator this thickening becomes very rapid, and when 
&r - 6’ = O(R-l) the boundary layer approximation clearly breaks down 
altogether. 

It should also be noted at this stage that the relation (3.Q which is 
demanded by the viscous mechanics of the boundary layer on the inner 
sphere, implies a relation between the functions # and x throughout the 
whole of that part of the core of the motion which lies within the cylinder 
p = 1 (i.e. the cylinder that touches the inner sphere). The reason for 
this is the form (3.1) that the solution must take in the absence of viscous 
forces. Actually, it is not strictly correct to apply the first of the results 
(3.1) without further explanation because (3.8) ensures that $I = O(R--l12) 
which vanishes in the limit of infinite Reynolds number. The strictly 
‘ inviscid ’ solution is therefore 

$ = 0, x = (P I .  

But, of course, when $ = O(R-1/2) and x = 0(1), it is still true that the 
viscous terms in the dynamical equation (2.15) are negligible in the core of 
the motion, so that the first of the results (3.1) is still valid. In this restricted 
sense, the motion in the core is ‘inviscid’, and we may write 

# = $o(P), x = XO(P). (3.9) 
Since p = sin 6’ on the inner sphere, it then follows that $Io(sin 6’) and Xo(sin 6’) 
are the functions of 6’ only that appear in (3.3), so that the condition (3.8) 

(3.10) becomes 

The analysis of the motion in the boundary layer on the outer sphere is 
xo(d = 2R112(1-~2)114#0(~) (P  < 1). 

substantially the same. Here, the integration of (3.2) gives 

2 cos 6’(x - xo(a sin 6’)) = - - R a r 3 9  

1 ax -2cos6’(#-#o(crsin6’)}= - -, 
R ar 

(3.11) 

where $Io and xo have the same meanings as in (3.9), since crsin 6’ is the value 
of p on the outer sphere. 

rl’ = (a - r ) (R  cos f3)ll2, (3.12) 

$ = #o(ac.sinB){ 1 -e-q’(cosq’-t-sinq’)), (3.13) 

Then, introducing the variable 

the relevant solution for $I is 
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and the corresponding solution for x is 

x = x0(u sin 0) + 2(R cos 0)1/2$,(a sin 0)e-q' cos 7'. (3.14) 

Moreover, the boundary conditions (2.12) require that x = u2sin20 over 
the outer sphere 7' = 0, so that (3.14) gives 

(3.15) 

Now, the result (3.15) provides a relation between the functions c,b0 and 
which must be satisfied throughout the entire core of the motion. Thus, 

u2 sin2@ - xo(u sin 0) = 2(R cos 0)1/2$,,(u sin 0). 

(3.16) 

without restriction on the value of p. In the region p < 1, therefore, the 
two relations (3.10) and (3.16) uniquely determine the functions $,, and x,,, 
and the relevant formulae are readily found to be 

(3.17) 

and 

The result (3.18) is particularly interesting inasmuch as it is an explicit 
example of a velocity distribution of order R0 being determined by viscous 
mechanics in a case where R is large. The manner in which this takes place 
in the present problem is, of course, very simple. In the core of the motion, 
the streamlines in an axial plane are parallel to the axis of rotation, so that 
fluid leaving the boundary layer on one sphere round the circle p = po must 
enter the boundary layer on the other sphere round a circle of the same 
radius. This is one essential connection between the boundary layers on 
the two spheres. The other essential connection arises from the fact that 
the azimuthal velocity in the core is also a function only of the radial distance 
from the axis of rotation, and must be such that the associated centri- 
fugal and coriolis forces are just sufficient to require the same mass flux 
from both boundary layers at any particular value of p. 

It follows from (3.18) that the cylindrical surface p = 1 must be another 
singular surface of the motion. It is true that the formula (3.18) is not 
valid for values of p close to unity, but this cannot affect the deduction that 
velocity gradients become very large at such values of p. Thus, it seems 
likely that viscosity must again be taken into account near this surface. 

The problem of finding the distribution of $,, and xo for values of p 
greater than unity is slightly different, because the result (3.10) is no longer 
relevant. It may be replaced, however, by the symmetry condition that 
1 / 1 =  0 over the equatorial plane 5 = 0. Hence, either the equatorial plane 
is also a singular surface of the motion (so that $ at 5 = 0 is not equal to $,,(p)), 
or else 

$o(p) = 0 for all p > 1. (3.19) 
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As regards the former possibility, the appropriate boundary layer approxi- 
mations in the cylindrical polar equations (2.14) and (2.15) yield the equations 

so that 
a 4  
- (1G - $o(P)) = - 4R2M - 1Go(P)h at4 

But there are clearly no solutions of this last equation that remain bounded 
for all values of < (both positive and negative), so that (3.19) appears to be 
the relevant deduction. It follows immediately from (3.16) that 

xo(p) = p2 for all p > 1, (3.20) 
which shows that the whole of the fluid outside the cylinder containing the 
inner sphere rotates as a rigid body with the same angular velocity as the 
outer sphere. There is, of course, no boundary layer over the portion of 
the outer sphere that bounds this rigid body rotation. 

There now remains the problem of finding the motion in the free shear 
layer near the surface p z 1. This problem is discussed in the following 
section. 

4. THE CYLINDRICAL SHEAR LAYER 

I n  the immediate neighbourhood of the surface p = 1, velocity gradients 
with respect to p must surely be very much greater than those with respect 
to <, so that it is again permissible to make a boundary layer type of approxi- 
mation in the governing equations. Thus, the equations (2.14) and (2.15) 
may be written, approximately, 

However, the approximate equations (4. l), unlike those governing the 
motion in the boundary layers over the spheres, are not always consistent 
with the linearization in E. For, if the exact equations of motion are 
written in cylindrical polar coordinates and a shear layer is supposed to 
exist at p = 1, it is a simple matter to show that the neglected terms on the 
left hand sides of the first and second of equations (4.1) are 

and 

respectively. Then, if 6 is the thickness of the layer, and if x is assumed to 
be O( 1) throughout the layer (x is actually equal to the azimuthal velocity 
when p = l), the orders of magnitude of these terms are 
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respectively. Hence, comparing the second of these estimates with the 
second of equations (4. l), the validity of the linearization is certainly depen- 
dent upon the condition that €18 should be small. Thus, if 6 + 0 as R + co, 
the equations (4.1) cannot refer to the limit R -+ co for fixed small E .  How- 
ever, if, as seems likely, the orders of magnitude of $, x and 6, are determined 
only by R when E is small, the equations should apply to the limit" E --f 0 for 
fixed large R. In this sense, the linearized equations (4.1) will be assumed 
to be valid. 

Now, it 'appears that the boundary layer type of approximation leading 
to (4.1) is the only feature that the shear layer has in common with conven- 
tional boundary layers. It does not seem to be possible, for instance, to 
have a shear layer of this kind in which dynamical variables are of the same 
order of magnitude as in ordinary boundary layers. For, if that were the 
case, we should have 

together with the information that the thickness of the layer is O(R-lI2). 
But, with these orders of magnitude, the first of equations (4.1) reduces to 

I/ = O(R-1'2), x = 0(1), 

a*+ - = 0, 
3P4 

and, quite apart from the dynamical unlikelihood of a layer with negligible 
acceleration in an axial plane, this equation does not possess solutions that 
are bounded as (p -  1)R112 --f 

Again, it might be thought that the orders of magnitude must be such 
that viscous and inertia forces are comparable in both equations of motion. 
This would at least correspond in principle, if not in detail, to the mechanics 
of an ordinary three-dimensional boundary layer. Under these circum- 
stances, elimination of $ from the equations (4.1) gives 

co. 

from which it follows immediately that the thickness of the layer must be 
O(R-1!3), and hence, from (4. l), that 

$lx = o(~1'3). ( 4 4  
Now, it must surely be the case that x = 0(1) throughout the layer, so that 
(4.2) gives 1/1 = O(R113), which implies a general mass flux by the velocity 
components in an axial plane of the same order of magnitude. But an 
important raison d'etre of the shear layer is to carry fluid from the boundary 
layer on one sphere to that on the other, and this mass flux is only O(R-l12). 
The conclusion would have to be, therefore, that, to the order of the boundary 
layer approximation, the total mass flux parallel to the axis of rotation was 
zero, and this would imply that there was a substantial ' return flow ' in the 
shear layer. I have not been able to show that such a situation is impossible, 
but the assumption of comparable viscous and inertia forces does seem to 

* A  somewhat easier limiting process to realize in any practical arrangement. 
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be a most unnatural method of attempting to satisfy the conditions of the 
problem. 

The only acceptable alternatives appear to be those in which the orders 
of magnitude of and x in the layer are those suggested by the boundary 
conditions, namely 

and the thickness of the layer is sufficiently large to ensure that viscous 
forces are comparable with inertia forces in either only one, or possibly 
neither, of the dynamical equations (4.1). Taking first the case in which the 
mechanics is not entirely inviscid, it is a simple matter to see that the equation 
in which viscous forces are appreciable must be the second of equations (4.1) ; 
from which it follows that the thickness of the layer is O(R--U4). The 
governing equations may therefore be written 

g = O(R-’/Z), x = 0(1), (4.3) 

If this interpretation of the mechanics is correct, it appears that viscous 
layers in rotating systems can have an entirely different structure from 
ordinary boundary layers. This structure is a highly anisotropic one in 
which viscous forces oppose only the rotary motion, so that the motion in 
planes containing the axis of rotation remains ‘inviscid’. In the special 
problem under discussion, the inviscid nature of the flow in an axial plane 
provides a neat explanation of how it is that fluid travels from one sphere 
to the other within a layer which remains thin. The essential point is that 
the layer is sufficiently thick, and the velocity sufficiently small, to make 
viscous farces negligible. 

The general solution of (4.4) is easily seen to be 

where F and G are arbitrary functions of p’, and F‘ is the second derivative 
of F. The form of these arbitrary functions is presumably determined by 
conditions at the points 5 = 0 and 5 = (az- 1)ll2 where the shear layer joins 
the boundary layer on the spheres. Unfortunately, the solution for the flow 
in the neighbourhood of these points lies outside the scope of the boundary 
layer approximations, and would require a much more comprehensive 
analysis of the motion than I have been able to make. However, it can at 
least be shown that the structure of the solution (4.7) is consistent with the 
boundary conditions as p’ --f 5 co. As p‘ -+ + co, the motion must tend to 
the rigid body rotation represented by (3.19) and (3.20), so that we must 
have 

F(co) = 1, G(w) = 0. 
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As pf +- co, on the other hand, the boundary conditions are found by 
writing p = 1 in the formulae (3.17) and (3.18). In this way we get 

F ( - w )  = 0, G(- a) = 

It  may then be noted that F”(p’) + 0 as p‘ -+ co, so that the dependence 
of the solution (4.7) on 5 disappears as the inviscid regions are approached. 

The remaining possibility is that the mechanics of the shear layer is 
entirely inviscid. This clearly corresponds to the case in which the thick- 
ness of the layer is of greater order of magnitude than R-lI4. In such a case, 
both the thickness of the layer and the velocity distribution within it (now 
of the simple form (3.9)) would presumably be determined by conditions 
near the joins of the shear layer with the boundary layers over the spheres. 

It would seem that the only satisfactory way of deciding which, if 
either, of the preceding two mechanical structures is correct is to determine 
the asymptotic form, for large Reynolds numbers, of the exact solution of 
the linearized equations (2.9) and (2.10). 

I am indebted to Mr W. W. Wood for several helpful comments on an 
earlier draft of this paper. 
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